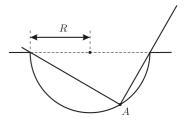

Задача 1


На гладком горизонтальном столе находится чаша массой M с полусферической выемкой радиусом R с гладкими стенками (смотри рисунок). На самый край выемки чаши поместили монету массой m, размеры которой значительно меньше размеров выемки. В начальный момент монета и чаша друг относительно друга не двигались. Монету и чашу одновременно отпустили. С каким ускорением движется монета, проходя самое нижнее положение?

Ответ:
$$a = \frac{2g(M+m)}{M}$$
, ускорение направлено вертикально вверх.

Задача 2

В горизонтальной крышке стола пропилена полуцилиндрическая канавка радиусом R=20 см. Ось канавки совпадает с верхней плоскостью крышки стола. На краю канавки сидит муравей, который хочет перебраться через нее. Школьник решил помочь муравью, сделав мостик из прямых отрезков проволоки. Но все куски проволоки, которые были в распоряжении школьника, имели длину L=38 см. Тогда школьник сделал мостик из двух проволок, расположив их так, как показано на рисунке, причем точку A, в

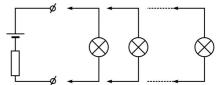
которой концы проволок воткнуты в дно канавки, он выбрал случайным образом. Муравей может ползти вверх по проволоке с постоянной скоростью V=0.5 см/с, а вниз — с постоянной скоростью 2V=1 см/с. Найдите максимальное время и минимальное время, за которое муравей сможет перебраться через канавку по такому мостику.

Ответ: максимальное время, за которое муравей сможет перебраться по мостику через канавку, $t_{\text{max}} = \frac{R\sqrt{5}}{V} \approx 90\,$ с; минимальное время, за которое муравей сможет перебраться по мостику через канавку, $t_{\text{min}} = \frac{R}{20V} \Big(19 + 2\sqrt{39} \Big) \approx 63\,$ с.

Задача 3

Горизонтальный сосуд с газом разделен на две части подвижным вертикальным поршнем, не проводящим тепло. Вначале давление в сосуде было равно p_0 , а температура T_0 . Нагревая газ в левой части сосуда до температуры $T_0 + \Delta T$, исследуют зависимость давления в системе p от параметра $x = \Delta T/T_0$. Эта зависимость оказалась линейной: $p = p_0(1 + \alpha x)$ с параметром $\alpha = 0,5$. Найдите отношение $k = v_1/v_2$ количеств газа в левой и правой частях сосуда. Температура в правой части сосуда поддерживается постоянной, трением между поршнем и стенками сосуда можно пренебречь.

Otbet:
$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\alpha}{1-\alpha} = 1$$
.


Задача 4

Имеются три концентрические хорошо проводящие металлические сферы 1, 2 и 3 радиусами R, 2R и 3R. Пространство между первой и второй сферами заполнено жидкостью с диэлектрической проницаемостью ε и удельным сопротивлением 11ρ , а между второй и третьей — жидкостью с диэлектрической проницаемостью 11ε и удельным сопротивлением ρ . Между внутренней и внешней сферами при помощи батарейки поддерживается постоянная разность потенциалов U. Чему равен заряд q_2 средней сферы? Какова сила тока I, который течет при этом в цепи?

Ответ:
$$q_2 = 0$$
, $I = \frac{12\pi RU}{17\rho}$.

Задача 5

Школьник Вася присоединяет к источнику питания, схема которого изображена на рисунке, электрические лампочки. Присоединив к источнику одну электрическую лампочку, Вася обнаружил, что на ней выделяется мощность P. Присоединив к источнику четыре такие же лампочки, соединенные параллельно, Вася

обнаружил, что на них вместе также выделяется мощность P. Какая мощность P_n будет выделяться на лампочках, когда Вася подсоединит к источнику питания n параллельно соединенных лампочек? Считайте, что сопротивление лампочки не зависит от силы тока.

Otbet:
$$P_n = \frac{9Pn}{(n+2)^2}$$
.