Задача 1

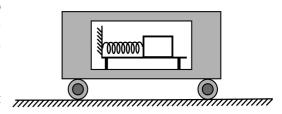
На гладкой горизонтальной поверхности находится жесткий клин массой M, причем его гладкая наклонная поверхность составляет угол α с горизонтом. На этот клин налетает жесткий шарик той же массы M, у которого за мгновение до столкновения с наклонной поверхностью клина скорость была горизонтальной. Происходит абсолютно упругий удар. Какой угол β с горизонтом составит скорость шарика сразу после удара?

Otbet:
$$tg\beta = 2tg\alpha$$
.

Критерии

Правильно записан закон сохранения механической энергии – 1 балл.

Правильно записан закон сохранения горизонтальной проекции импульса – 1 балл.


Правильно записан закон сохранения проекции импульса шарика на наклонную плоскость -2 балла.

Решена система уравнений и получен правильный ответ – 2 балла.

Всего: 6 баллов.

Задача 2

Поезд, подходящий к станции, движется равнозамедленно с ускорением a=0,2 м/с², вплоть до момента остановки. На абсолютно гладком горизонтальном столе внутри вагона поезда находится грузик, соединённый пружиной с неподвижной опорой (см. рис.). Пока поезд движется, грузик неподвижен относительно вагона. В момент, когда поезд останавливается, грузик приходит в движение и начинает колебаться с периодом T=1 с. Найдите амплитуду колебаний грузика.

Otbet:
$$x_m = \frac{aT^2}{4\pi^2} \approx 5$$
 MM.

Критерии

Записан второй закон Ньютона для грузика – 4 балла.


Использована формула для периода колебаний пружинного маятника -1 балл.

Получен правильный ответ (формула и число) – 1 балл.

Всего: 6 баллов.

Задача 3

С одним молем одноатомного идеального газа совершают циклический процесс 1-2-3-4-1, как показано на рисунке в координатах ρ -T (плотность-температура). Участок 2-3 – гипербола. Температуры в точках 1, 2 и 3 равны, соответственно, T_1 = 300 K, T_2 = 500 K, T_3 = 800 K. На участке 4-1 газ отдает холодильнику количество теплоты $Q_{41} \approx 1172~\rm Дж$. Найти КПД цикла.

Ответ:
$$\eta = \frac{\nu R(T_3 - T_2) - Q_{41}}{\frac{3}{2}\nu R(T_2 - T_1) + \frac{5}{2}\nu R(T_3 - T_2)} \approx 0.15$$
(или $\eta = \frac{2\left(T_3 - T_2 - T_1\ln\frac{T_3}{T_2}\right)}{5T_3 - 2T_2 - 3T_1} \approx 0.15$).

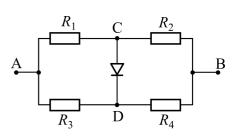
Критерии

Цикл перерисован на pV-диаграмме (или все процессы описаны словами) – 1 балл.

Найдено количество теплоты $Q_{12} - 1$ балл.

Найдено количество теплоты $Q_{23} - 1$ балл.

Найдено количество теплоты $Q_{34} - 1$ балл.


Получена правильная формула для КПД – 1 балл.

Получен правильный численный ответ – 1 балл.

Всего: 6 баллов

Задача 4

Участок АВ электрической цепи состоит из резисторов с сопротивлениями $R_1=R_0,\ R_2=9R_0,\ R_3=9R_0,\ R_4=R_0,\ где\ R_0=1$ кОм, и идеального диода CD (см. рис.). Идеальный диод пропускает ток без сопротивления в направлении от С к D и не пропускает совсем в обратном направлении. Участок АВ подключают к источнику переменного синусоидального напряжения $U_{AB}(t)=U_m\sin\omega t$, амплитуда которого равна $U_m=300$ В. Какая тепловая мощность будет выделяться на этом участке?

Ответ:
$$P = \frac{17U_m^2}{90R_0} = 17 \text{ Br}$$
.

Критерии

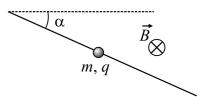
Для участка цепи правильно применен закон Ома – 1 балл.

Найдено соотношение сопротивлений, при котором диод открыт или закрыт – 1 балл.

(Если правильное обоснование того факта, что в течение одного полупериода изменения напряжения диод открыт, а в течение другого полупериода – закрыт, дано другим способом – 2 балла.)

Найдено сопротивление участка цепи при открытом диоде – 1 балл.

Найдено сопротивление участка цепи при закрытом диоде – 1 балл.


Записана правильная формула для средней за период мощности – 1 балл.

Получен правильный ответ (формула и число) – 1 балл.

Всего: 6 баллов.

Задача 5

Бусинка, нанизанная на неподвижный стержень, образующий угол α с горизонтом (см. рис.), имеет массу m и заряд q. Бусинка может скользить вдоль стержня с коэффициентом трения μ и начинает движение из состояния покоя, причем $\mu < tg\alpha$. Система находится в однородном магнитном поле с индукцией B, линии которой горизонтальны (перпендикулярны

плоскости рисунка и направлены за его плоскость). Какую максимальную скорость и какое максимальное ускорение будет иметь бусинка при движении? Стержень не проводит ток. Рассмотреть два случая: q>0 и q<0.

Otbet:
$$v_{\text{max}} = \begin{cases} \frac{mg}{\mu qB} (\sin \alpha + \mu \cos \alpha), & q > 0 \\ \frac{mg}{\mu qB} (\sin \alpha - \mu \cos \alpha), & q < 0 \end{cases}$$
; $a_{\text{max}} = \begin{cases} g \sin \alpha, & q > 0 \\ g (\sin \alpha - \mu \cos \alpha), & q < 0 \end{cases}$.

Критерии

При q > 0 найдено максимальное ускорение — 1 балл.

При q > 0 найдена максимальная скорость – 2 балла.

При q < 0 найдено максимальное ускорение — 1 балл.

При q < 0 найдена максимальная скорость – 2 балла.

Всего: 6 баллов.