
8-9 класс

- 1. Планета размером с Юпитер вращается вокруг похожей на Солнце звезды по круговой орбите с радиусом орбиты, равным большой полуоси орбиты Меркурия. Наблюдатели на Земле видят регулярные падения блеска звезды из-за прохождения этой планеты по ее диску. Оцените характерное время затмения.
- 2. На поверхности каких планет земной группы можно наблюдать восход Солнца? Где он будет самым коротким? Оцените его длительность.
- 3. Житель острова Киритимати (1°53′ с. ш., 157°24′ з. д., UTC+14) решил сплавать в гости к своему другу, живущему на острове Нуку-Хива (8°52′ ю. ш., 140°06′ з. д., UTC-9.5). Для этого он сел на корабль, который по прямой со скоростью 40 км/ч доставил его на Нуку-Хива. Какой день был и сколько было времени на Нуку-Хива, когда туда прибыл путешественник, если он начал свой путь в полдень понедельника? UTC всемирное время.
- 4. Космический аппарат «Dawn» в феврале 2015 года прибывает к последней цели своего путешествия карликовой планете Церера. По пути он посетил Марс и долго исследовал астероид Веста. Определите, сколько времени потребовалось бы космическому аппарату для выполнения его программы, если бы после встречи с Марсом он двигался только по оптимальным (гомановским) эллипсам? Сколько времени у него было бы для исследования Весты? Орбиты Марса, Весты и Цереры считать круговыми и лежащими в одной плоскости. В момент отправки с Марса Церера отставала от него в орбитальном движении на 140°.
- 5. Космическое межзвездное облако имеет размер 100 а. е. и среднюю концентрацию $10^6\,\mathrm{cm}^{-3}$. Концентрация молекул воды в этом облаке составляет 10^{-5} от средней. Космический корабль пролетает через это облако по прямой со скоростью 50 км/с. Экипаж корабля решил пополнить бортовые запасы воды, раскрыв снаружи корабля специальную ловушку диаметром 10 м. За какое время удастся собрать этой ловушкой тонну воды? Масса молекулы воды $3\cdot 10^{-23}\,\mathrm{r}$.
- 6. Перед Вами фотография одного из полушарий Луны. Оцените максимальный угловой размер лунного моря (отмечено стрелкой) при наблюдении с орбиты Венеры, поверхности Земли и Марса. Можно ли его пронаблюдать в этот момент с помощью 150 мм телескопа?

СПРАВОЧНЫЕ ДАННЫЕ

Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6.672 \cdot 10^{-11} \,\mathrm{m}^3 \cdot \mathrm{Kr}^{-1} \cdot \mathrm{c}^{-2}$

Скорость света в вакууме $c = 2.998 \cdot 10^8$ м/с

Постоянная Больцмана $k = 1.38 \cdot 10^{-23} \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1}$

Постоянная Планка $h = 6.626 \cdot 10^{-34}$ Дж · с

Универсальная газовая постоянная $R = 8.31 \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Постоянная Стефана-Больцмана $\sigma = 5.67 \cdot 10^{-8} \text{ кг} \cdot \text{c}^{-3} \cdot \text{K}^{-4}$

Масса протона $m_p = 1.6726 \cdot 10^{-27} \text{ кг}$,

Масса нейтрона $m_{\rm n} = 1,6749 \cdot 10^{-27} \, {\rm Kr}$

Масса электрона $m_e = 9.11 \cdot 10^{-31} \, \mathrm{kr}$

Масса ядра гелия $m_{\alpha} = 6,6467 \cdot 10^{-27} \text{ кг.}$

Астрономическая единица 1 а.е. = $1.496 \cdot 10^{11}$ м

Парсек 1 пк = 206265 a.e. = $3.086 \cdot 10^{16}$ м

Постоянная Хаббла $H = 70 \, (\text{км/c}) / \text{Мпк}$

Планета	Физические характеристики						Характеристики орбит			
	Радиус	Плот-	Период	Наклон	Гео-	Большая	Эксцент-	Наклон к	Период	
		ность	вращения	экватора к	метр.	полуось	риситет	плоскости	обра-	
			вокруг оси	плоскости	альбедо			эклиптики	щения	
				орбиты						
	KM	Г •СМ ⁻³		градусы		a. e.		градусы	лет	
Солнце	695000	1.41	25.380 сут	7.25	_	_	_	_	-	
Меркурий	2439.7	5.42	58.646 сут	0.00	0.10	0.3871	0.2056	7.004	0.2408	
Венера	6051.8	5.20	243.019 сут*	177.36	0.65	0.7233	0.0068	3.394	0.6152	
Земля	6378.1	5.52	23.934 час	23.45	0.37	1.000	0.0167	0.000	1 1	
Марс	3397.2	3.93	24.623 час	25.19	0.15	1.523	0.0934	1.850	1.881	
Юпитер	71492	1.33	9.924 час	3.13	0.52	5.202	0.0483	1.308	11.86	
Веста	289 × 280 ×	3.5	5.342 час	_	0.42	2.361	0.089	7.135	3.628	
	226									
Церера	487.3	2.08	8.074 час	3	0.09	2.765	0,0793	10.535	4.601	

* – обратное вращение.

Данные о Луне	Формулы приближенного вычисления				
Среднее расстояние от Земли 384400 км	$\sin x \approx tg x \approx x$;				
Эксцентриситет орбиты 0.055	$\cos x \approx 1 - \frac{x^2}{2}$;				
Наклон плоскости орбиты к эклиптике 5°09′	$\cos x \approx 1 - \frac{1}{2}$				
Сидерический (звездный) период обращения 27.321662	$(1+x)^n \approx 1+nx$;				
СУТОК	(x << 1, углы выражаются в радианах $)$.				
Радиус 1738 км Масса 7.348·10 ²² кг или 1/81.3 массы Земли	Разрешение телескопа				
Средняя плотность 3.34 г∙см ⁻³	p. 140				
Видимая звездная величина в полнолуние –12.7 ^m	$R=\frac{140}{D}$				
Видимая звездная величина в первой и последней	R получается в угловых секундах, если				
четверти —10 ^m	диаметр объектива D в миллиметрах.				
Объемы некоторых фигур	Энергия фотона				
Шар $\frac{4}{3}\pi R^3$, Цилиндр $\pi r^2 h$, Конус $\frac{1}{3}\pi r^2 h$	$\varepsilon = h v $, h — постоянная Планка, v — частота фотона				
R – радиус шара, r – радиус основания, h - высота					