заочное задание (декабрь), 8-й класс

Заочное задание (ноябрь) состоит из четырёх задач. За решение каждой задачи участник получает до 4 баллов по результатам автоматической проверки ответов и до 6 баллов на основании проверки развёрнутого ответа. Всего участник может получить до 40 баллов.

Задача 1. Полый стальной кубик с тонкими стенками, длина ребра которого 100 мм, имеет массу 472 г. Чему равна толщина стенок кубика, если у всех стенок она одинакова? Плотность стали $\rho_c = 7800 \text{ кг/м}^3$.

Возможное решение. Пусть a — длина ребра кубика, b — длина ребра полости. Тогда

$$\rho_c(a^3 - b^3) = m \implies b = \sqrt[3]{a^3 - \frac{m}{\rho_c}} = \sqrt[3]{10^3 - \frac{472}{7.8}} \cong 9,79 \text{ (cm)} \approx 98 \text{ (mm)}.$$

Пусть h - толщина стенок кубика, тогда

$$h = \frac{a-b}{2} \cong 1 \text{ (MM)}.$$

Задача 2. Однажды Красная Шапочка решила навестить бабушку. Путь ей предстоял не близкий. Сначала она треть пути не спеша шла по дорожке со скоростью 4 км/ч. Затем, проголодавшись, села на пенек и съела несколько пирожков. Потратив на еду много времени, девочка загрустила, так как уже начинало темнеть. К счастью, тут из леса выбежал Волк, который любезно согласился домчать её до бабушки со скоростью 12 км/ч. В результате получилось, что на всё путешествие девочке потребовалось столько же времени, сколько и при движении с постоянной скоростью 4 км/ч. Сколько пирожков на пеньке скушала Красная Шапочка, если на каждый пирожок она затрачивала время равное одной девятой времени всего своего путешествия?

Возможное решение. Если средняя скорость равна скорости на первой трети пути, значит, средняя скорость на второй части пути также равна 4 км/ч. Пусть T — время путешествия Красной Шапочки. Тогда на «перекус» и поездку верхом на Волке Красная Шапочка потратила $\frac{2}{3}T$.

Пусть Красная Шапочка сидела на пеньке и ела пирожки время t. Запишем формулу средней скорости для второй части пути:

$$v_{\rm cp} = \frac{v_{\rm B}(\frac{2}{3}T - t) + 0 \cdot t}{\frac{2}{3}T} \implies t = \frac{2}{3}T\left(1 - \frac{v_{\rm cp}}{v_{\rm B}}\right) = \frac{4}{9}T,$$

где $v_{\rm cp}$ - средняя скорость на второй части пути, $v_{\rm B}$ — скорость Волка. Так как на каждый пирожок Красная Шапочка затрачивала время равное одной девятой времени всего своего путешествия, следовательно, она съела 4 пирожка.

Задача 3. В калориметре находится некоторое количество льда. После того, как в калориметр на время τ_1 опустили нагреватель, в нём оказался лёд имеющий температуру на 2°C большую, чем в начале. Какое время τ_2 может потребоваться для дальнейшего нагревания содержимого калориметра тем же нагревателем еще на 2°C? Удельная теплоемкость воды c_2 =4200 Дж/(кг⁰C), льда c_1 =2100 Дж/(кг⁰C), удельная теплота плавления льда λ = 330 кДж/кг. Потерями в окружающую среду и теплоёмкостью калориметра можно пренебречь. Процессы теплообмена внутри калориметра считать достаточно быстрыми.

Возможное решение.

В процессе первого нагревания льду было передано количество теплоты $Q = c_1 m(2^{\circ}C)$. В зависимости от конечной температуры льда после первого нагревания возможны следующие предельные варианты:

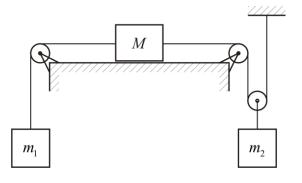
- а) был получен лёд при температуре меньшей чем -2°C, тогда на повторное нагревание снова понадобится количество теплоты Q и $\tau_2 = \tau_1$.
- б) был получен лёд при температуре 0°С, тогда сперва придется лёд расплавить, а затем полученную воду нагреть на 2°С. Для этого потребуется количество теплоты

$$Q_1 = c_2 m(2^{\circ}C) + \lambda m = \frac{c_2(2^{\circ}C) + \lambda}{c_1(2^{\circ}C)} Q \approx 80,6Q.$$

Значит, необходимое время нагревания в этом случае, $\tau_2 = 80.6\tau_1$. В промежуточных случаях (когда температура льда после первого нагревания больше -2° C, но меньше 0° C), потребуется меньшее время нагревания, так как теплоёмкость льда меньше теплоёмкости воды.

Искомое время нагревания лежит в диапазоне $\tau_1 \le \tau_2 \le 80,6\tau_1$.

Задача 4. К бруску, лежащему на столе, с двух сторон с помощью систем из нитей и блоков прикреплены два груза (см. рисунок). Масса левого груза $m_1 = 2$ кг и остаётся постоянной, а массу правого груза m_2 можно изменять. Оказалось, что если масса правого груза больше 2 кг, но меньше 6 кг, то система находится в равновесии, в противном случае брусок начинает двигаться. Найдите коэффициент трения μ между бруском и



столом, если масса бруска 10 кг. Нити невесомы и нерастяжимы, блоки невесомы и трения в осях блоков нет.

Возможное решение.

Когда система находится в равновесии, сила натяжения T_1 нити, привязанной к бруску справа, равна силе тяжести, действующей на левый груз: $T_1 = m_1 g$; а сила натяжения T_2 нити, привязанной к бруску слева равна половине силы тяжести, действующей на правый груз: $T_2 = m_2 g/2$. На брусок по вертикали действуют сила тяжести Mg и сила реакции опоры N. Из условия равновесия: N = Mg. По горизонтали на брусок действуют силы

натяжения нитей и сила трения $F_{\rm Tp}$, из условия равновесия $F_{\rm Tp} = |T_1 - T_2| = |m_1 g - m_2 g/2|$. Модуль силы трения не может быть больше, чем μN , откуда

$$\mu Mg = m_1 g - \frac{m_{2\min} g}{2} = \frac{m_{2\max} g}{2} - m_1 g,$$

$$\mu = \frac{2m_1 - m_{2\min}}{2M} = \frac{m_{2\max} - 2m_1}{2M} = 0.1.$$

Автоматическая проверка ответов

- **1.** 100
- **2.** 6
- **3.** 12
- **4.** 40
- **5.** 8
- **6.** 4
- **7.** 2
- **8.** 4