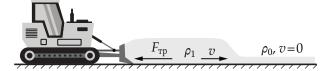


82-я Московская олимпиада школьников по физике 2021 год 10 класс

1. Неправильный воздух (8 баллов)

Отношение количества кислорода к количеству азота в некотором объёме «неправильного воздуха» равно 1:5. На рисунке изображены графики зависимости давления насыщенных паров азота и кислорода от температуры, при этом линия чёрного цвета соответствует давлению паров кислорода. Температура неправильного воздуха в начальный момент равна $t_0 = -120\,^{\circ}\mathrm{C}$.

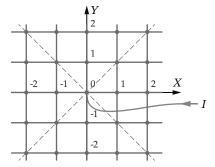


В процессе охлаждения в некоторый момент времени кислород и азот начинают конденсироваться одновременно. Используя график, определите как можно точнее, каким было начальное давление неправильного воздуха, если охлаждение производилось изобарически. А если изохорически?

2. Похоже на уборку снега (9 баллов)

Некоторые особенности процесса сгребания снега бульдозером можно описать на основе следующей простейшей модели. Вдали от бульдозера (см. рис.) слой снега имеет линейную плотность ρ_0 и покоится. Бульдозер и часть снега, прилегающая к его щиту, движутся с постоянной скоростью v. На движущуюся часть действует сила трения, удовлетво-

ряющая закону Кулона-Амонтона: $F_{\rm rp} = \mu N$; коэффициент трения μ считается известным. Ускорение свободного падения равно g.

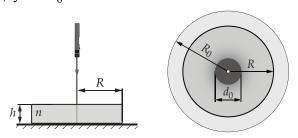


А. Пусть весь снег, вовлекаемый бульдозером в движение, распределяется в движущейся части со средней постоянной линейной плотностью ρ_1 . Бульдозер в состоянии развить мощность не более, чем W_0 . Найдите время t, в течение которого возможно движение бульдозера с постоянной скоростью v. (6 баллов)

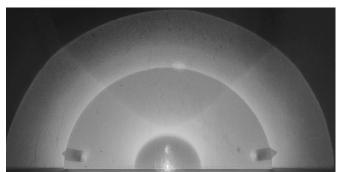
В. Пусть после того, как масса снега в движущейся части достигает некоторого значения M_0 , она перестаёт увеличиваться. При вовлечении в движение порции снега, такая же порция покидает движущуюся часть, скатываясь вбок относительно направления движения. Какую мощность W_1 должен развивать бульдозер при движении с постоянной скоростью v в этом случае? (3 балла)

3. Ну очень большая сетка (10 баллов)

Сетка в форме квадрата состоит из очень большого количества ячеек. В узел с координатами (0,0), совпадающий с центром квадрата, втекает ток I=4 А (см. рисунок). Сопротивление любого проводника, соединяющего соседние узлы сетки, равно 1 Ом.



А. Пусть узлы сетки на стороне большого квадрата подключены к специальному источнику напряжения, так что потенциалы узлов, лежащих на диагоналях (см. рис., пунктирные линии), равны нулю везде кроме центра квадрата, где потенциал равен 1 В. Определите потенциалы φ_{1k} в узлах с координатами (k+1,k), и потенциалы φ_{2k} в узлах с координатами (k+2,k) при $k \geq 0$. (4 балла)


В. Источник напряжения заменили на другой — ещё более специальный. Теперь потенциалы узлов и на диагоналях, и в центре равны нулю. Чему равны потенциалы φ_{1k} в узлах с координатами (k+1,k), и потенциалы φ_{2k} в узлах с координатами (k+2,k) при $k\geq 0$ в этом случае? (6 баллов)

4. Ореол и тёмный круг (10 баллов)

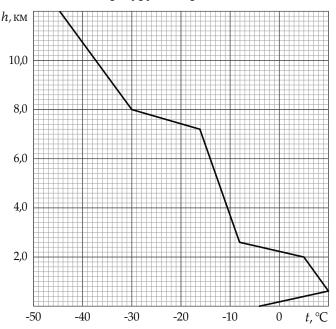
На горизонтальной поверхности располагается диск радиусом R и толщиной h, сделанный из стекла с показателем преломления n=1,5 (рис. ниже, слева). Нижняя матовая сторона диска отражает свет диффузно (иначе говоря, равномерно в любых направлениях). Верхняя и боковая поверхности диска тщательно отшлифованы. Луч мощной лазерной указки, освещающей диск, направлен вдоль его оси. При рассматривании диска сверху (рис. ниже, справа) наблюдаются: ярко выраженный тёмный круг с нечёткой границей диаметром d_0 и светлый ореол с резкой границей в виде концентрической с диском окружности радиусом R_0 .

Ниже вы видите фотографию, полученную при проведении опыта, похожего на описанный выше. Мощной лазерной указкой освещалась нижняя точка середины половинки стеклянного диска. Можно различить тёмный полукруг с размытой границей и светлый ореол с резкой границей.

А. Известно, что толщина диска равна $h=14\,\mathrm{mm}$, а отношение радиусов диска и границы ореола равно $\frac{R_0}{R}\approx 1,65$ (это значение получается при измерениях по фотографиям опытов). Найдите радиус диска R. (5 баллов)

В. Чем может быть обусловлено возникновение тёмного круга? Оцените его радиус r_0 , считая показатель преломления и толщину диска известными. (5 баллов)

Примечание. Можно считать, что в условиях данной задачи для лучей, выходящих из стекла в воздух, от границы раздела отражается не более $10\,\%$ энергии падающего излучения, если величина угла падения меньше 37° .


5. Устойчивость атмосферы (13 баллов)

А. Сухой адиабатой называется такое распределение температуры $T_a(h)$ в атмосфере Земли, что при увеличении высоты малой порции (в метеорологии их называют частицами) сухого воздуха на небольшую величину Δh без теплообмена с окружающими частицами её температура изменяется на малую величину ΔT_a . Найдите ΔT_a , считая Δh известным. Ускорение свободного падения равно $g=10~\text{м/c}^2$. Средние молярные масса и теплоёмкость воздуха при постоянном объёме равны: $\mu=29~\text{г/моль}$ и $c_V=2.5R$ ($R=8.3~\text{Дж/(моль} \cdot \text{K)}$) соответственно. Движением воздушных масс можно пренебречь. (6 баллов)

Указание. Для малых изменений параметров идеального газа (T, p, V) или (T, p, ρ) , где ρ — плотность, из уравнения состояния следуют формулы:

$$\frac{\Delta T}{T} = \frac{\Delta p}{p} + \frac{\Delta V}{V}, \qquad \frac{\Delta T}{T} = \frac{\Delta p}{p} - \frac{\Delta \rho}{\rho}.$$

В. В естественных условиях равновесное распределение температуры воздуха по высоте имеет сложный вид. Линия на графике ниже моделирует зависимость t(h), возникшую в воздухе над городом X в день Y. В физике атмосферы принято откладывать температуру по горизонтальной оси.

Устойчивым является такое равновесное состояние воздуха в атмосфере, что при adua bamuческом смещении частицы воздуха из положения равновесия по вертикали на небольшую величину Δh , действующие на неё силы стремятся вернуть эту частицу в положение равновесия. Укажите на графике границы (по высоте) участков устойчивой атмосферы. Воздух предлагается считать сухим, наличием паров воды и движением воздушных масс пренебречь, значения, заданные в части $\bf A$ задачи, можно считать известными. (7 $\it bannoe$)