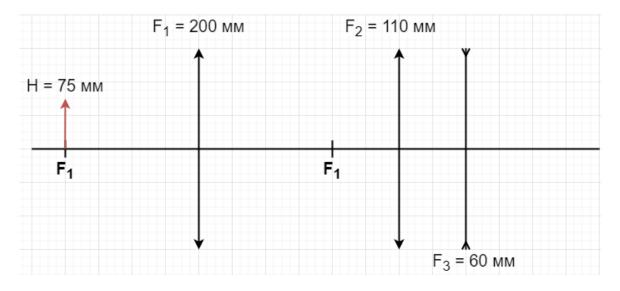
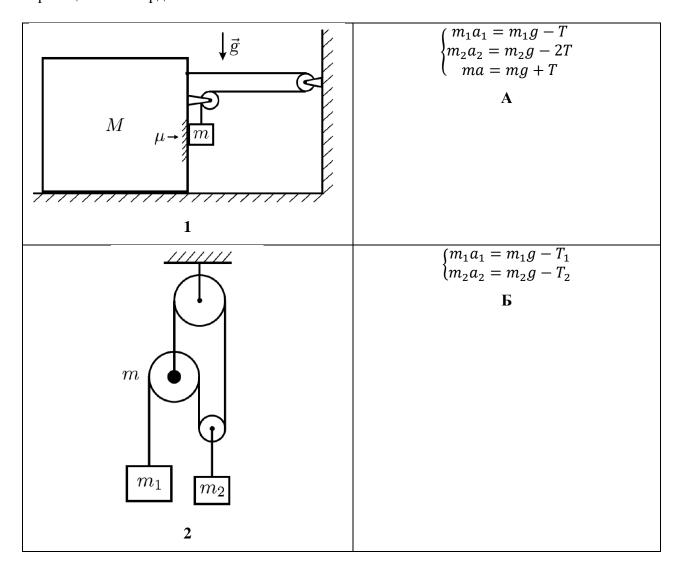
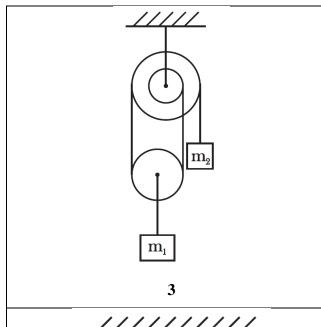
Московская предпрофессиональная олимпиада

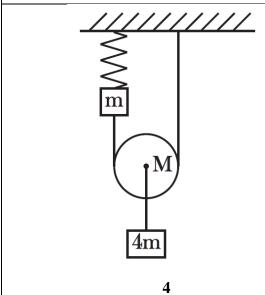

Отборочный тур по физике

9 класс

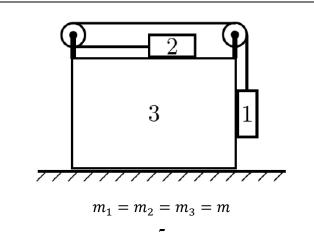
Вариант 1


Задача 1.


По рисунку системы линз определите характеристики изображения.

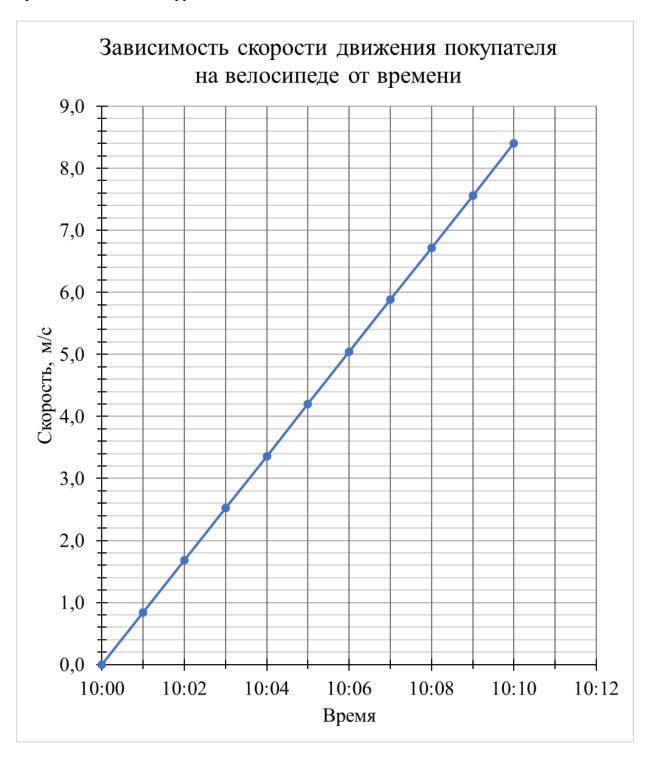

- 1. Действительное, не перевернутое
- 2. Мнимое, перевернутое
- 3. Действительное, перевернутое
- 4. Мнимое, не перевернутое
- 5. Изображения не будет

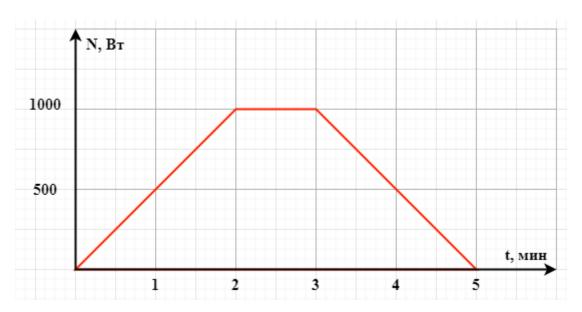
На рисунках приведены сложные механические системы, состоящие из грузов, блоков и пружин. Сопоставьте представленное изображение с записью второго закона Ньютона в проекциях на координатные оси.



$$\begin{cases} ma_{1x} = N \\ ma_{2x} = -T \\ ma_{2x} = T - N \end{cases}$$
$$ma_{1y} = mg - T$$
$$\mathbf{B}$$

$$\begin{cases} Ma_{2x} = 2T - N_1 = Ma \\ ma_{1y} = -mg + T + F_{\text{Tp}} \\ Ma_{2y} = -Mg + N_2 - T - F_{\text{Tp}} \end{cases}$$


Γ


$$4ma + Ma + ma$$

$$= 4mg - T_1 - 2T + mg$$

$$+ Mg - F_{y\pi p}$$
 Д

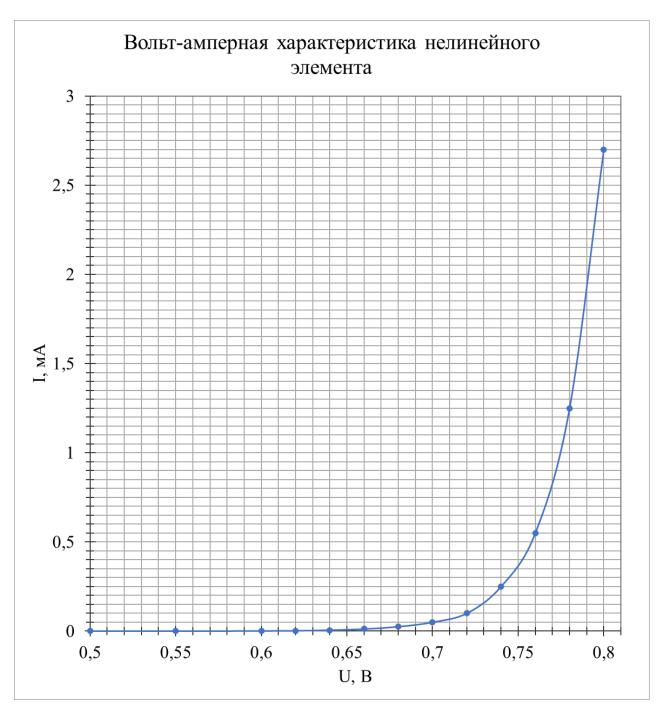
Для измерения параметров электрической цепи, при решении кейса Научнотехнологического профиля, школьник Васечкин получил в качестве оборудования милливольтметр с внутренним сопротивлением $r=5\,\mathrm{Om}$ и шкалой с пределом измерения $U_0=100\mathrm{mB}$. Рассчитайте, какое добавочное сопротивление необходимо подключить к прибору, чтобы с помощью него измерить силу тока до 5A. Ответ дать в Ом округлив до сотых.

Неудачливый покупатель выехал из магазина на велосипеде ровно в 10:00, однако забыл свои покупки на кассе. Камеры слежения зафиксировали его скорость в течение некоторого времени (см. рисунок). Через 5 минут после этого из магазина в том же направлении выехал администратор на электросамокате, с его покупками. Определите, какое ускорение должно быть у электросамоката, чтобы догнать неудачливого покупателя на расстоянии 2 км от магазина. Движение в задаче считать равноускоренным. Ответ представить в m/c^2 и округлить до тысячных.

Сергей купил на Aliexpress умный чайник, в паспорте которого был приведен график зависимости мощности нагревательного элемента чайника от времени работы. Сергей был в душе — экспериментатор, поэтому при первом включении измерил среднюю скорость возрастания температуры воды, которая составила 0,2°С/с за весь цикл работы чайника (5 минут). При этом «эксперименте» вода в чайнике нагрелась лишь до 80°С. Для упрощения задачи считаем, что процессы теплообмена с окружающей средой отсутствуют, процессы внутреннего теплообмена происходят быстро.

Определите общее количество теплоты, которое выделил нагревательный элемент чайника? Ответ представьте в кДж, округлив до целого.

Определите, воду какой температуры Сергей залил для своего эксперимента. Ответ представьте в °С и округлите до целого.


Какое количество теплоты необходимо для нагрева воды в чайнике до кипения от начального состояния? Ответ представьте в кДж, округлив до целого.

Задача 6

Аспирант Сергеев проводил эксперимент с прибором, электрическая схема которого состоит из параллельно соединенных резистора и некоторого нелинейного элемента (зависимость силы тока от напряжения носит нелинейный характер). Снимая вольтамперную характеристику прибора, он получил следующий набор значений (см. таблицу).

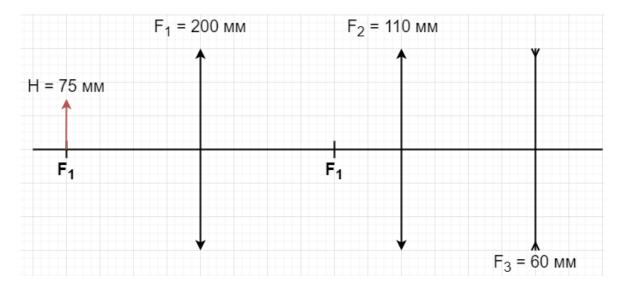
I, MA	0,6012	0,6225	0,6455	0,672	0,705	0,75	0,99	1,31	2,03	3,5
U, B	0,6	0,62	0,64	0,66	0,68	0,7	0,72	0,74	0,76	0,78

Постройте график вольтамперной характеристики прибора и определите сопротивление резистора, если вольт-амперная характеристика нелинейного элемента выглядит так:

Резистор плотно залит оболочкой из пластика, и при длительной работе на повышенном напряжении испытывает нагрев. При этом известно, что в минуту резистор выделяет в атмосферу 100 Дж тепла. Определите, через какое время оболочка резистора начнет плавиться, если его начальная температура была равна 28 °C? Температура размягчения пластика составляет 105 °C. Теплоёмкость пластика равна 1,3 кДж/(кг•°С) , масса оболочки 5,25 г. Теплоёмкостью резистора можно пренебречь. Ответ представить в минутах и округлить до десятых.

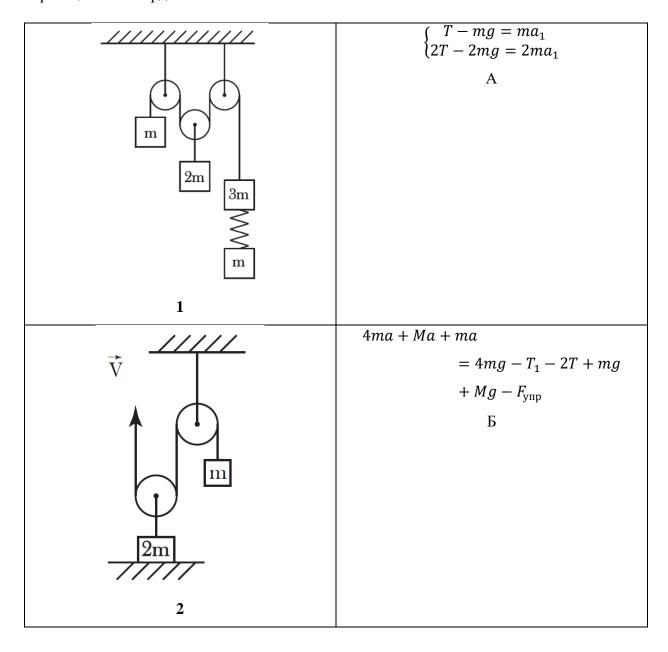
Номинальный режим работы нелинейного элемента соответствует значению тока в 2 мА. Определите, какая мощность может потребляться на нем в процессе работы в номинальном режиме. Ответ представьте в мВт и округлите до десятых.

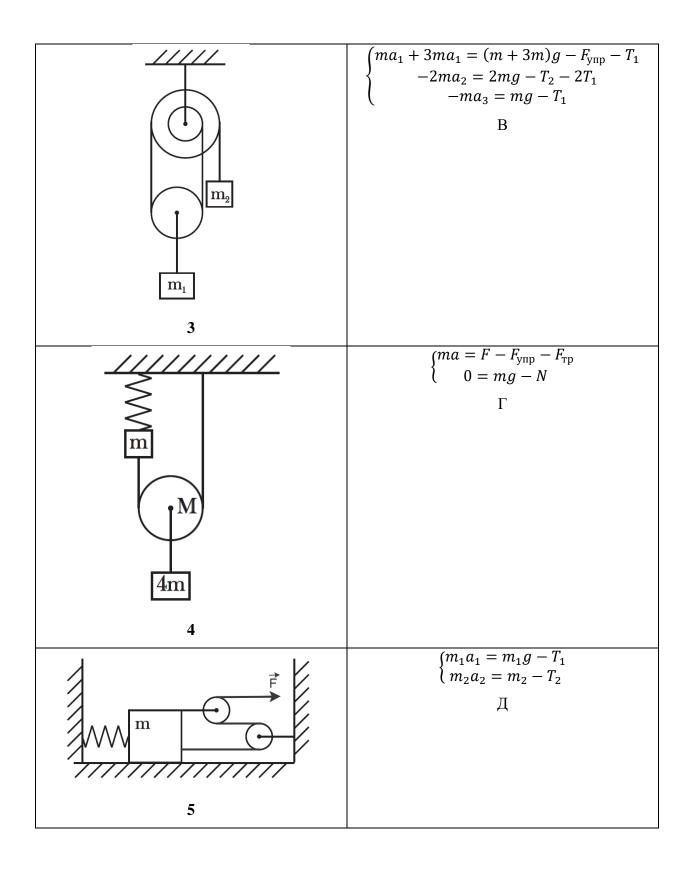
Московская предпрофессиональная олимпиада


Отборочный тур по физике

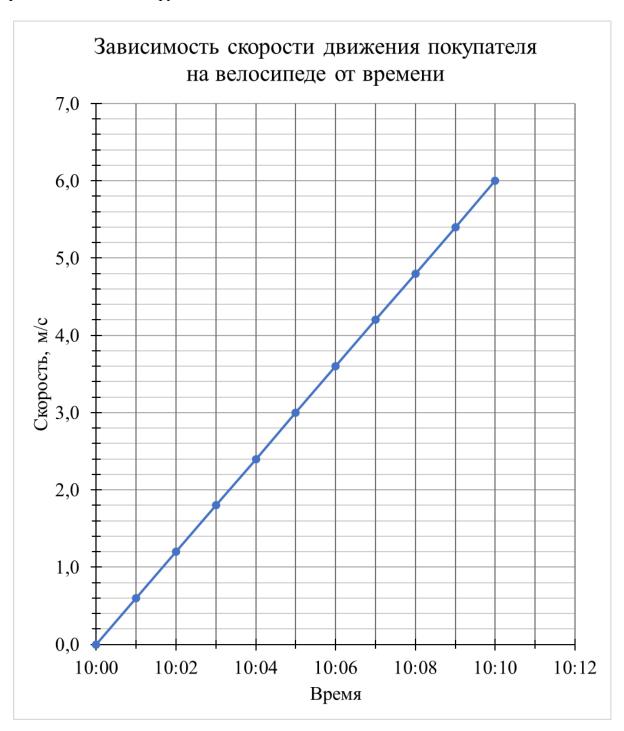
9 класс

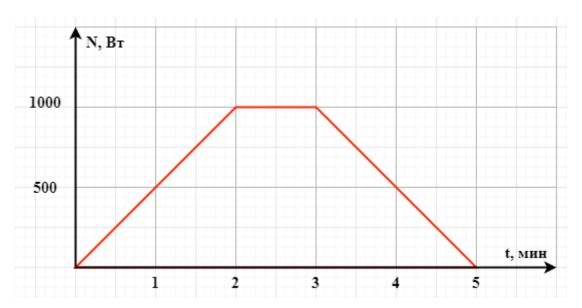
Вариант 2


Задача 1.


По рисунку системы линз определите характеристики изображения.

- 1. Действительное, не перевернутое
- 2. Мнимое, перевернутое
- 3. Действительное, перевернутое
- 4. Мнимое, не перевернутое
- 5. Изображения не будет


На рисунках приведены сложные механические системы, состоящие из грузов, блоков и пружин. Сопоставьте представленное изображение с записью второго закона Ньютона в проекциях на координатные оси

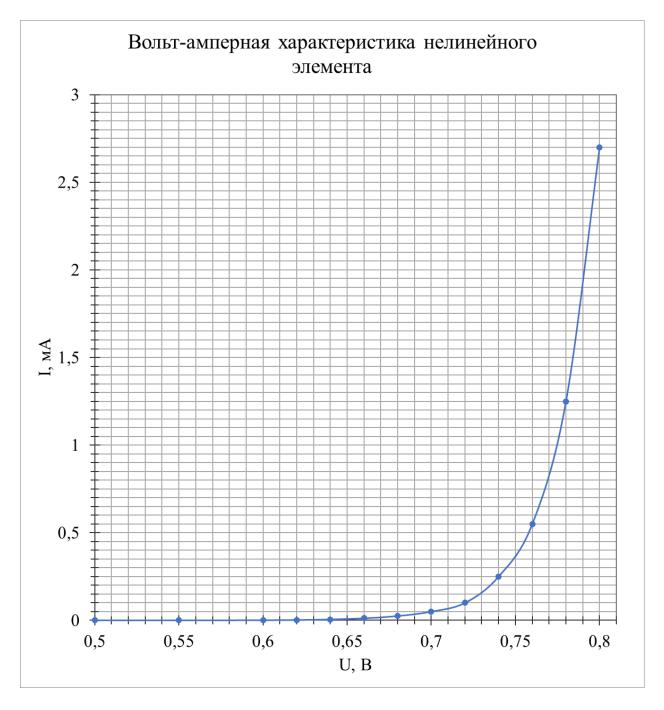


Для измерения параметров электрической цепи, при решении кейса Научнотехнологического профиля, школьник Васечкин получил качестве оборудования милливольтметр с внутренним сопротивлением $r=5\,\mathrm{Om}$ и шкалой (пределом измерения) на $U_0=100\,\mathrm{mB}$. Рассчитайте, какое необходимо добавочное сопротивление, чтобы измерить напряжение $100\,\mathrm{B}$? Ответ дать в кОм, округлив до целого.

Неудачливый покупатель выехал из магазина на велосипеде ровно в 10:00, однако забыл свои покупки на кассе. Камеры слежения зафиксировали его скорость в течение некоторого времени (см. рисунок). Через 5 минут после этого из магазина в том же направлении выехал администратор на электросамокате, с его покупками. Определите, какое ускорение должно быть у электросамоката, чтобы догнать неудачливого покупателя на расстоянии 2 км от магазина. Движение в задаче считать равноускоренным. Ответ представить в m/c^2 и округлить до тысячных.

Сергей купил на Aliexpress умный чайник, в паспорте которого был приведен график зависимости мощности нагревательного элемента чайника от времени работы. Сергей был в душе — экспериментатор, поэтому при первом включении измерил среднюю скорость возрастания температуры воды, которая составила 0,15°С/с за весь цикл работы чайника (5 минут). При этом «эксперименте» вода в чайнике нагрелась лишь до 60°С. Для упрощения задачи считаем, что процессы теплообмена с окружающей средой отсутствуют, процессы внутреннего теплообмена происходят быстро.

Определите общее количество теплоты, которое выделил нагревательный элемент чайника? Ответ представьте в кДж, округлив до целого.


Определите, воду какой температуры Сергей залил для своего эксперимента? Ответ представьте в °С и округлите до целого.

Какое количество теплоты необходимо для нагрева воды в чайнике до кипения от начального состояния? Ответ представьте в кДж, округлив до целого.

Аспирант Сергеев проводил эксперимент с прибором, электрическая схема которого состоит из параллельно соединенных резистора и некоторого нелинейного элемента. Снимая вольт-амперную характеристику прибора, он получил следующий набор значений (см. таблицу).

I, MA	0,201	0,209	0,219	0,232	0,252	0,283	0,340	0,497	0,803	1,510
U, B	0,6	0,62	0,64	0,66	0,68	0,7	0,72	0,74	0,76	0,78

Постройте график вольт-амперной характеристики прибора и определите сопротивление резистора, если вольтамперная характеристика нелинейного элемента выглядит так:

Резистор плотно залит оболочкой из пластика, и при длительной работе на повышенном напряжении испытывает нагрев. При этом известно, что в минуту резистор выделяет в атмосферу 210 Дж тепла. Определите, через какое время оболочка резистора начнет плавиться, если его начальная температура была равна 18 °C? Температура размягчения пластика составляет 100 °C. Теплоёмкость пластика равна 1,3 кДж/(кг•°C) , масса оболочки 5,25 г. Теплоёмкостью резистора можно пренебречь. Ответ представить в минутах и округлить до десятых.

Номинальный режим работы нелинейного элемента соответствует значению тока в 0,85 мА. Определите, какая мощность может потребляться на нем в процессе работы в номинальном режиме. Ответ представьте в мВт и округлите до десятых.