
84-я Московская олимпиада школьников по физике 2023 год 9 класс

1. Частота ультразвука (10 баллов)

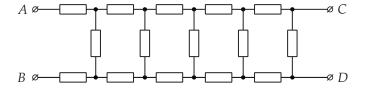
1а. (2 балла) Источник ультразвуковых импульсов движется по прямой со скоростью v навстречу неподвижному приёмнику, располагающемуся на той же прямой. Источник излучает короткие импульсы с частотой f_0 . С какой частотой f их принимает приёмник? Как изменится ответ, если источник будет удаляться от приёмника? Скорость распространения ультразвука равна c, при этом $c \gg v$.

На дне моря установлен ультразвуковой детектор. Судно движется прямолинейно с постоянной скоростью v, проходя в некоторый момент времени прямо над детектором. На судне установлен источник ультразвуковых импульсов, излучающий их с частотой f_0 с одинаковой интенсивностью в любом направлении. Детектор принимает импульсы с частотой f, отличной от частоты излучаемых импульсов. Обозначим $n=\frac{f}{f_0}$ отношение этих частот. На рисунке, представленном ниже, показан фрагмент зависимости отношения n от времени при движении судна. Скорость ультразвука в воде равна $1500 \, \mathrm{m/c}$.

1b. (*8 баллов*) Чему равна скорость судна? На какой глубине располагается детектор?

Указание. При решении задачи могут оказаться полезными следующие приближённые формулы, справедливые при малых значениях x ($|x| \ll 1$)

$$\sin x \approx x$$
, $\cos x \approx 1 - \frac{x^2}{2}$, $\frac{1}{1+x} \approx 1-x$.


2. Пошла на дно (6 баллов)

В бутылку с достаточно толстыми стенками вместимостью V=700 мл наливают некоторое количество воды. Прикрыв горлышко пальцем, бутылку переворачивают вверх дном, погружают в ведро с водой и убирают руку. Бутылка плавает, сохраняя вертикальное положение. Над поверхностью воды выступает

часть бутылки объёмом $\Delta V=15$ мл. Ведро с бутылкой выносят из комнаты, температура воздуха в которой равна $t_0=25$ °C, на мороз. Можно считать, что в процессе охлаждения воздух, находящийся внутри бутылки, сжимается, и его объём изменяется по закону $V=V_0$ $(1+\alpha(t-t_0))$, где V_0 — объём воздуха при температуре t_0 , α — коэффициент, равный $3.6\cdot 10^{-3}\ 1/$ °C. Найдите температуру воздуха внутри бутылки в тот момент, когда бутылка полностью погрузится в воду. Масса бутылки равна $300\ r$, плотность материала, из которого она изготовлена, $\rho=2600\ {\rm kr/m}^3$, плотность воды $\rho_0=1000\ {\rm kr/m}^3$.

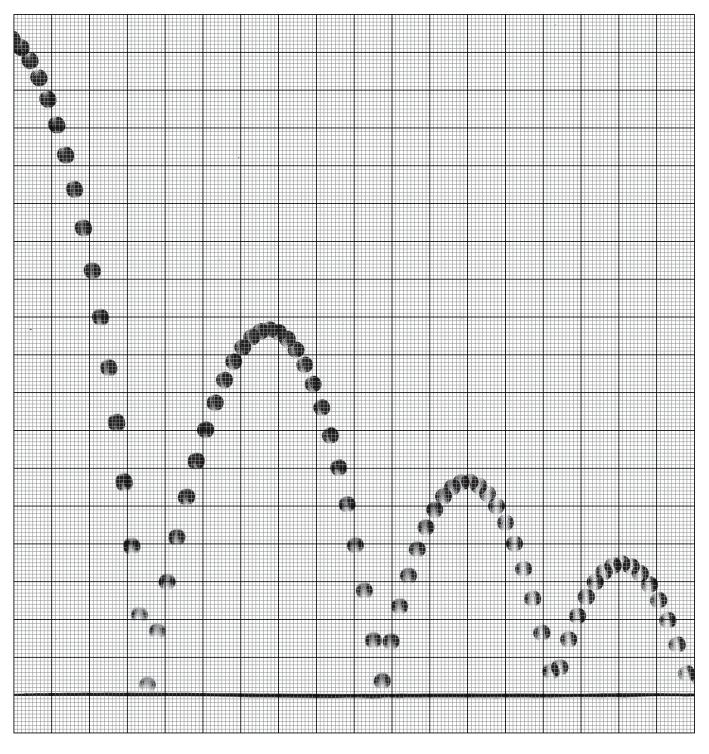
3. Цепь из нескольких звеньев (8 баллов)

Электрическая цепь, показанная на рисунке, составлена из пяти одинаковых звеньев, в каждом из которых содержится три одинаковых резистора сопротивлением R. Выводы A и D, а также C и B соединяют проводниками пренебрежимо малого сопротивления попарно. Определите сопротивление между точками A и B образовавшейся цепи.

4. Столкновения на плоскости (8 баллов)

На расстоянии L=10 см друг от друга на достаточно протяжённой наклонной плоскости, составляющей угол $\alpha=30^\circ$ с горизонталью, удерживаются два абсолютно одинаковых бруска. В момент времени t=0 бруски освобождают и они начинают двигаться. Величины, относящиеся к верхнему в начальный момент бруску, далее помечаем индексом 1, а относящиеся к нижнему индексом 2. Обозначим $v_1(t)$ и $v_2(t)$ скорости брусков в момент времени t. Коэффициенты трения о плоскость равны $\mu_1=\frac{\sqrt{3}}{6}$ и $\mu_2=\frac{\sqrt{3}}{3}$. Ускорение свободного падения считается равным 10 м/c^2 . Размеры брусков пренебрежимо малы, столкновения между ними являются абсолютно упругими.

4а. (4 балла) Для первой секунды движения изобразите графики зависимостей $v_1(t)$ и $v_2(t)$. В какие моменты времени происходят столкновения брусков?


4b. (4 балла) Какое расстояние проходит первый брусок (верхний в исходной конфигурации) к моменту n-го столкновения?

Продолжение задания см. на листе 2

5. Определите по фотографии (10 баллов)

На стробоскопической фотографии (см. рисунок) можно видеть положение движущегося в поле тяжести земли мяча, сталкивающегося с горизонтальной поверхностью, в разные моменты времени. Промежутки времени между двумя последовательными вспышками стробоскопической лампы одинаковы. Фотография инвертирована (чёрный цвет изменён на белый, белый заменён на чёрный), сетка наложена в графическом редакторе позже для удобства расчётов. Столкновения мяча с горизонтальной поверхностью нельзя считать упругими, в процессе столкновения кинетическая энергия поступательного движения мяча уменьшается.

- **5а**. (*2 балла*) Далее везде в этой задаче мы предполагаем, что сила сопротивления воздуха пренебрежимо мала. Изучив фотографию, кратко объясните, насколько справедливо наше предположение?
- **5b**. (2 балла) Найдите отношение $\frac{v_1}{v_3}$, где v_1 и v_3 скорости мяча в наивысшей точке траектории после первого и третьего ударов о поверхность соответственно.
- **5с.** (*3 балла*) Определите как можно точнее угол между скоростью мяча сразу после первого столкновения и горизонтом.
- **5d**. (*3 балла*) Во сколько раз изменяется кинетическая энергия мяча в процессе второго столкновения с поверхностью?

