МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

10 класс Вариант 1

Залача 1

Дан "серый ящик", показанный на рисунке 1. Диод — это электронный компонент, который позволяет току течь только в одном направлении. Когда ДИОД подключён правильно, то есть анод (положительный вывод, на схеме находится со стороны основания треугольника) подключён к более высокому потенциалу, а катод (отрицательный вывод, на схеме находится со стороны вершины треугольника касающегося палки) — к более низкому, и разность потенциалов достигает "напряжения открытия", ток проходит через диод. Иначе ток не будет проходить, и диод будет блокировать его. Вольт-амперная

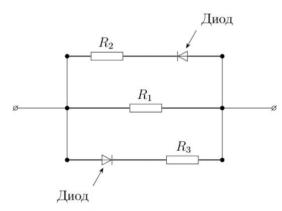


Рис.1 - серый ящик

характеристика (зависимость силы тока от напряжения на элементе) идеального диода в "ящике" представлена на рисунке 2. К схеме подключают идеальные амперметр, вольтметр и источник постоянного напряжения, чтобы снять ВАХ "серого ящика" пуская ток сначала в одном направлении, а потом в обратном. Сначала "+" источника расположен на левом выводе схемы. Полученные зависимости представлены на рисунках ниже. Используя информацию с графиков, ответьте на следующие вопросы:

- 1) Чему равно напряжение открытия диода?
- 2) Чему равно R_1 ?
- 3) Чему равно R_2 ?
- 4) Чему равно R_3 ?
- 5) Нарисуйте блок-схему программы, которая по количеству параллельно соединённых резисторов и их величинам находит эквивалентное напряжение.

Входные данные:

N - количество резисторов;

 R_i - сопротивление резисторов в Омах, i = 1, 2, ..., N;

Выходные данные:

R - эквивалентное сопротивление

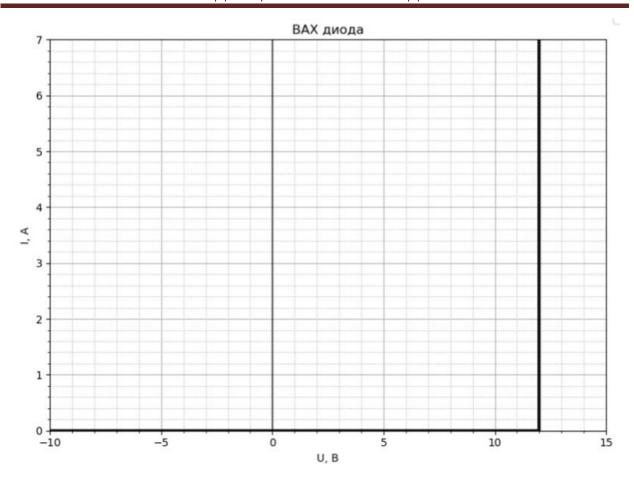


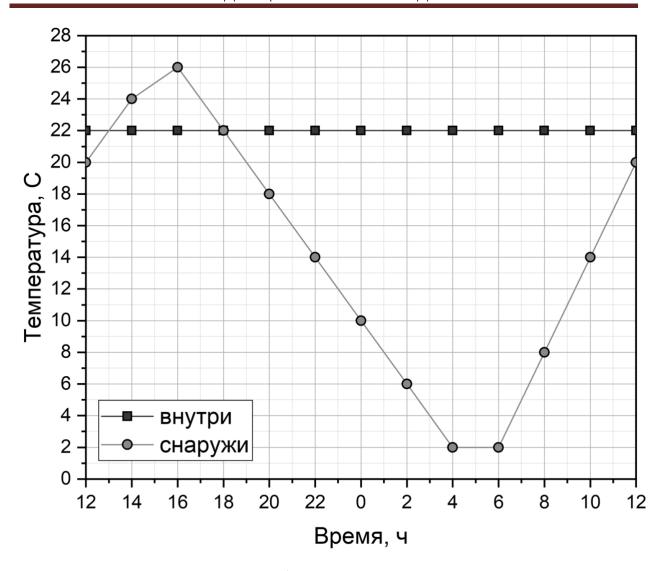
Рисунок 2 - BAX идеального диода

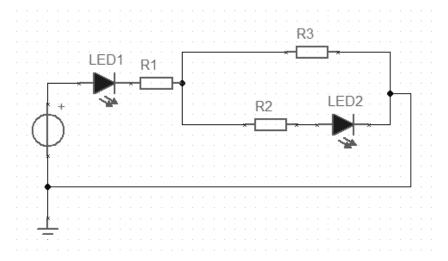
МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Задача 2

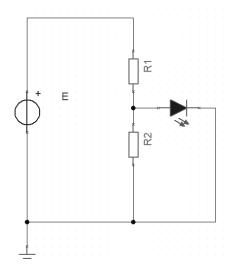
Тепловые аккумуляторы — устройства, способные накапливать в себе тепловую энергию и отдавать её при необходимости использования для нужд отопления или горячего водоснабжения. Эти устройства отличаются большой теплоёмкостью, что достигается за счёт использования фазового перехода веществ: при накоплении тепла внутри них происходит плавление рабочего вещества (например, парафин), а при отдаче тепла — его кристаллизация. Использование фазового перехода позволяет получать компактные устройства, способные накапливать значительное количество тепловой энергии, а постоянство температуры при фазовом переходе позволяет получать термически стабильный источник тепла (то есть, отдающий тепло при постоянной температуре).

На метеостанции в отдалённом высокогорном регионе требуется установить тепловой аккумулятор для поддержания комфортной температуры в 22 °C внутри помещения — небольшого домика с плоской крышей, размерами 10х8х3 метра (длинаширина-высота). Определите минимальную массу рабочего вещества теплового аккумулятора (парафин), достаточной для поддержания указанной температуры внутри здания в течение суток. Ответ дайте в килограммах, округлив до целого числа. Принять удельную теплоту парафина равной 0,15 МДж/кг. Суточное колебание температуры снаружи приведено на рисунке 1. Считать, что потери тепла за одну секунду в окружающую среду от здания пропорциональны разности температур между улицей и внутренним помещением, площади всех стен и крыши, а также коэффициенту теплопередачи, равному 2,3 Вт/(м²-°С). Восполнение затраченной аккумулятором тепловой энергии идёт в период между 10 и 18 часами за счёт солнечных тепловых коллекторов. Считать, что во время их работы их тепловой мощности достаточно и для восполнения энергии в аккумуляторе, и для поддержания температуры в помещении. Работа аккумулятора после полной кристаллизации вещества не рекомендуется из-за резкого снижения его эффективности.



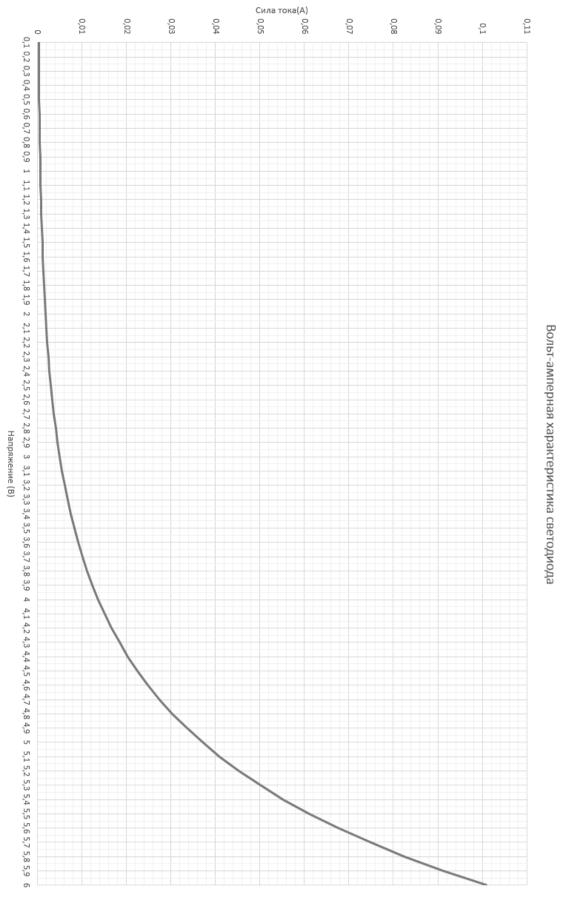

Рисунок 1 – Суточное колебание температуры окружающей среды

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

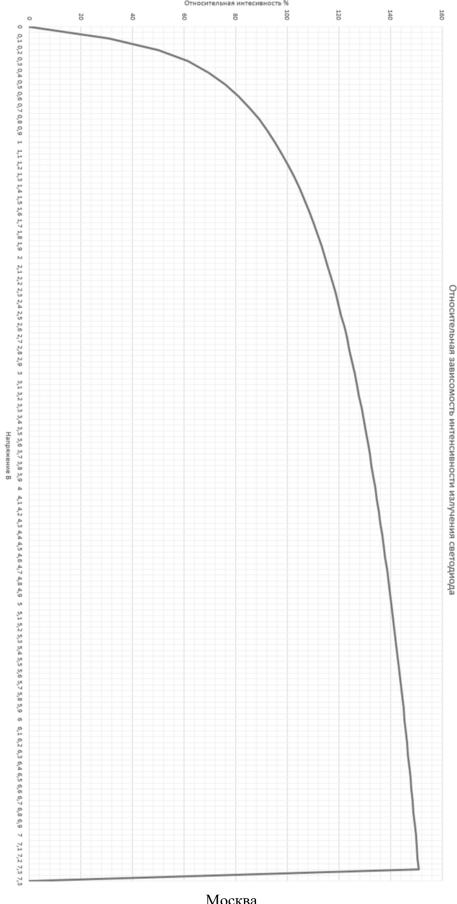

Задача 3

Вам предоставлена для исследования некоторая электрическая схема, показанная на рисунке. Изучив схему, дайте ответы на следующие вопросы:

- 1) Что такое предельная рассеиваемая мощность электронного компонента?
- 2) Что такое идеальный источник напряжения?
- 3) Рассчитайте номинал сопротивления и рассеиваемую мощность резистора R_1 и R_2 на представленной схеме, если известно, что для корректной работы первого светодиода необходима сила тока равная 40 мА и падение напряжения составляет 4 В, а для второго светодиода сила тока 20 мА и падение напряжения 2 В. Резистор R_3 =200 Ом, источник напряжения 12 В.

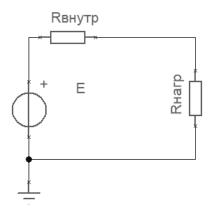


4) Рассчитайте номинал сопротивления и рассеиваемую мощность резистора R_1 , а так же рассеиваемую мощность резистора R_2 на представленной схеме, на основании графика зависимости интенсивности излучения светодиода и его вольт-амперной характеристики при мощности работы светодиода на 124%. Источник напряжения 10B, сопротивление R_2 =1кОм.



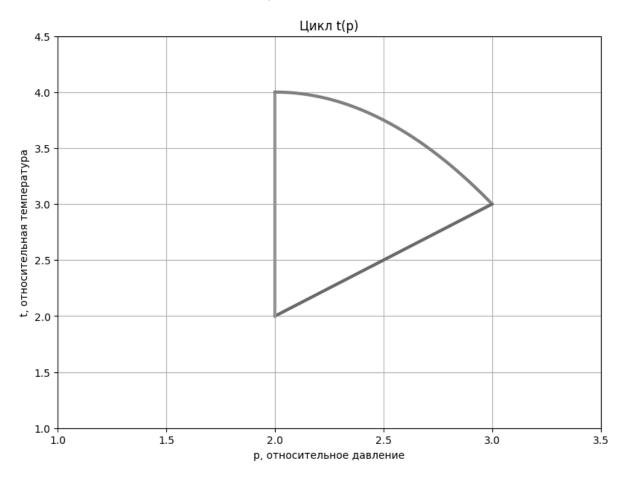
Москва 2024 / 2025 уч. г.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ


Москва 2024 / 2025 уч. г.

Москва 2024 / 2025 уч. г.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ


5) Определите и обоснуйте, при каком сопротивлении $R_{\rm harp}$ реальный источник напряжения будет выдавать максимальную мощность, если известно E=10В, $R_{\rm внутр}=100$ Ом.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Задача 4

Один моль одноатомного идеального газа участвует в прямом циклическом процессе, изображённом на рисунке. График приведён в координатах t(p), где $t=T/T_0$ относительная температура; $p=P/P_0$ - относительное давление.

Цикл состоит из прямо пропорциональной зависимости температуры от давления, участка параболы, которая задаётся формулой $t=-p^2+4p$, и изобары. Перестройте график в p(V) координатах, где V-объём газа. Найдите работу газа A в этом процессе, если $T_0=250K$. Газовая постоянная $R=8,31\frac{D}{MOJD}$

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Задача 5

Задача об остывании воды, несмотря на свою простоту, является одной из самых важных при рассмотрении любых инженерных систем, в которых имеется нагретая жидкость, или возможен перенос тепла (путём прямого нагрева, или излучения, например). Однако процесс переноса тепла в окружающее пространство редко рассматривается в классическом школьном курсе физики, при решении задач которого теплопотерями часто пренебрегают, а системы рассматривают в варианте с отсутствующим теплообменом через стенку (или поверхность) объекта. Интересующийся школьник в этот момент может вспомнить эмпирический закон Ньютона-Рихмана, описывающий тепловой поток между разными температурами через температурный напор. Природа переноса тепла от некоторого теплоносителя в сосуде в общем случае должна включать в себя рассмотрение всех процессов одновременно: конвекции, излучения, теплопроводности, а также испарения (в случае высокой температуры). Однако если разница температуры между теплоносителем и окружающей средой не очень велика, скорость изменения температуры объекта можно считать пропорциональной разнице этих температур. В общем виде это описывается так называемым дифференциальным уравнением, имеющим вид:

$$\frac{dT}{dt} = -r(T - T_s)$$

Где Т - температура теплоносителя, Тs - температура окружающей среды, r - некоторый «коэффициент остывания», зависящий от механизма теплопередачи, площади поверхности, и иных свойств нашего объекта. Этот закон носит название закон теплопроводности Ньютона. Однако компьютер, как и мы, плохо умеет аналитически считать такие уравнения. Одним из способов его решить (то есть найти зависимость y(x)) является так называемый метод Эйлера. Для понимания принципа работы этого метода можно рассмотреть функцию в упрощённом виде:

$$\frac{dy}{dt} = f(x, y), y(t_0) = y_0$$

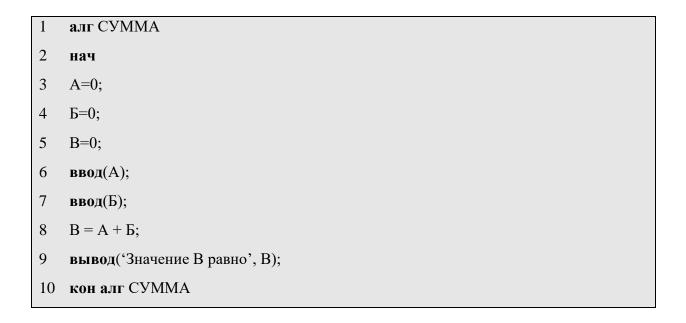
Смысл методики заключается в делении функции y(x) на малые отрезки, на каждом из которых мы считает её линейной. В этом случае, для расчёта значения функции можно воспользоваться линейным приближением:

$$y_{n+1} = y_n + \Delta x \cdot f(x_n, y_n)$$

 Δx - расстояние между соседними точками (шаг деления)

Пользуясь этой информацией, выполните следующие задания:

- 1) Напишите формулы, описывающие алгоритм Эйлера для решения уравнения теплопроводности. Считая начальную температуру воздуха 22 °C, а теплоносителя 83 °C, выполните численный расчёт с помощью алгоритма Эйлера не менее чем для 7 точек. Коэффициент г считать равным 0,0517.
- 2) Напишите алгоритм решения уравнения методом Эйлера в формате псевдокода, для реализации в виде программы.
- 3) На основании экспериментальных данных о остывании теплоносителя в сосуде (при начальной температуре воздуха 22 °C) постройте на одном графике зависимости T(t) для


МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

реальных данных и результаты собственного расчёта. Сделайте вывод о результатах вычисления.

Таблица 1. Зависимость температуры теплоносителя от времени

Время, мин	T, °C	Время, мин	T, °C
0	83.0	8.0	64.7
1.0	77.7	9.0	63.4
2.0	75.1	10.0	62.1
3.0	73.0	11.0	61.0
4.0	71.1	12.0	59.9
5.0	69.4	13.0	58.7
6.0	67.8	14.0	57.8
7.0	66.4	15.0	56.6

Пример программы для расчёта суммы двух чисел в виде псевдокода приведён ниже:

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

10 класс Вариант 2

Задача 1

Дан "серый ящик", показанный на рисунке 1. Диод — это электронный компонент, который позволяет току течь только в одном направлении. Когда диод подключён правильно, то есть (положительный вывод, на схеме находится стороны основания треугольника) подключён к более высокому потенциалу, а катод (отрицательный вывод, на схеме находится стороны вершины треугольника касающегося палки) — к более низкому, и разность потенциалов достигает "напряжения открытия", ток проходит через диод. Иначе ток не будет

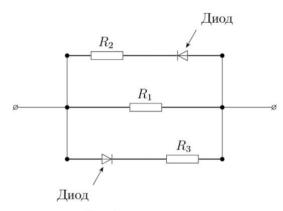


Рис.1 - серый ящик

проходить, и диод будет блокировать его. Вольт-амперная характеристика (зависимость силы тока от напряжения на элементе) идеального диода в "ящике" представлена на рисунке 2. К схеме подключают идеальные амперметр, вольтметр и источник постоянного напряжения, чтобы снять ВАХ "серого ящика" пуская ток сначала в одном направлении, а потом в обратном. Сначала "+" источника расположен на левом выводе схемы. Полученные зависимости представлены на рисунках ниже. Используя информацию с графиков, ответьте на следующие вопросы:

- 1) Чему равно напряжение открытия диода?
- 2) Чему равно R_1 ?
- (3) Чему равно R_2 ?
- 4) Чему равно R_3 ?
- 5) Нарисуйте блок-схему программы, которая по количеству параллельно соединённых резисторов и их величинам находит эквивалентное напряжение.

Входные данные:

N - количество резисторов;

 R_i - сопротивление резисторов в Омах, i = 1, 2, ..., N;

Выходные данные:

R - эквивалентное сопротивление

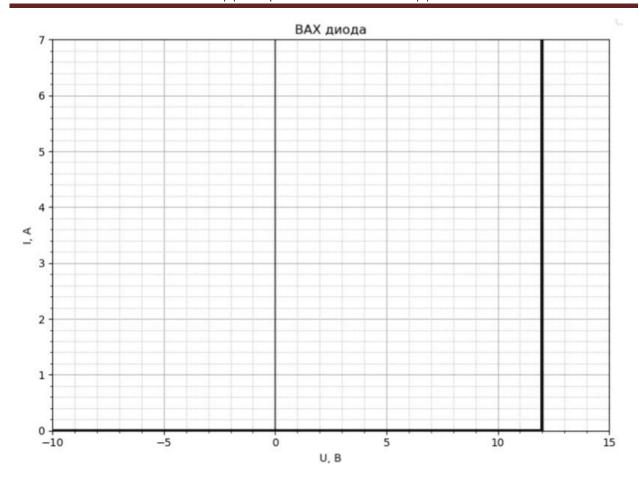


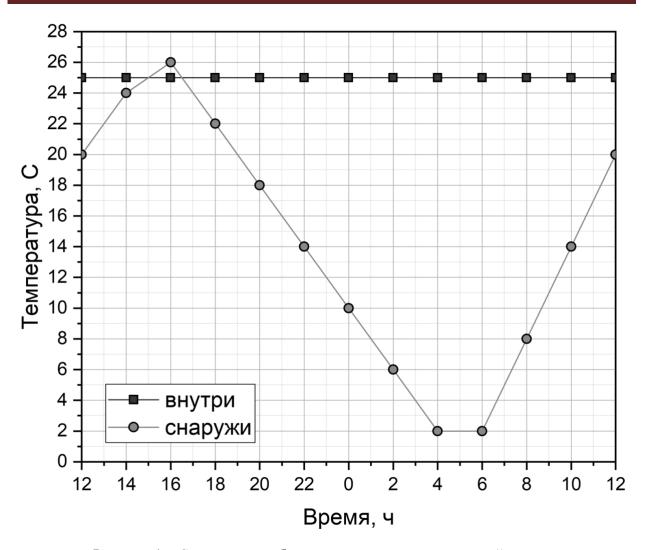
Рисунок 2 - BAX идеального диода

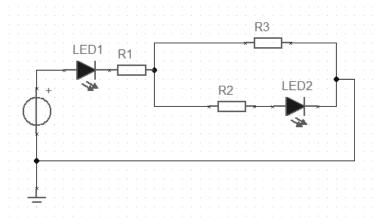
МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Залача 2

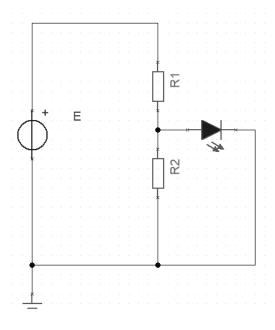
Тепловые аккумуляторы – устройства, способные накапливать в себе тепловую энергию и отдавать её при необходимости использования для нужд отопления или горячего водоснабжения. Эти устройства отличаются большой теплоёмкостью, что достигается за счёт использования фазового перехода веществ: при накоплении тепла внутри них происходит плавление рабочего вещества (например, парафин), а при отдаче тепла – его кристаллизация. Использование фазового перехода позволяет получать компактные устройства, способные накапливать значительное количество тепловой энергии, а постоянство температуры при фазовом переходе позволяет получать термически стабильный источник тепла (то есть, отдающий тепло при постоянной температуре).

На метеостанции в отдалённом высокогорном регионе требуется установить тепловой аккумулятор для поддержания комфортной температуры в 25 °C внутри помещения – небольшого домика с плоской крышей, размерами 6х8х2,5 метра (длинаширина-высота). Определите минимальную массу рабочего вещества теплового аккумулятора (парафин), достаточной для поддержания указанной температуры внутри здания в течение суток. Ответ дайте в килограммах, округлив до целого числа. Принять удельную теплоту парафина равной 0,15 МДж/кг. Суточное колебание температуры снаружи приведено на рисунке 1. Считать, что потери тепла за одну секунду в окружающую среду от здания пропорциональны разности температур между улицей и внутренним помещением, площади всех стен и крыши, а также коэффициенту теплопередачи, равному 1,3 Bт/(м².°C). Восполнение затраченной аккумулятором тепловой энергии идёт в период между 8 и 17 часами за счёт солнечных тепловых коллекторов. Считать, что во время их работы их тепловой мощности достаточно и для восполнения энергии в аккумуляторе, и для поддержания температуры в помещении. Работа аккумулятора после полной кристаллизации вещества не рекомендуется из-за резкого снижения его эффективности.



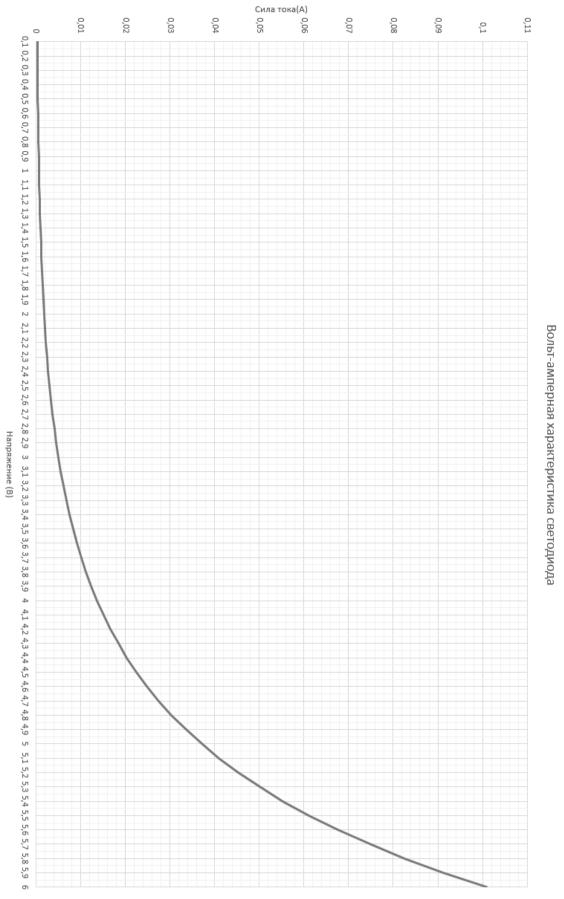

Рисунок 1 – Суточное колебание температуры окружающей среды

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

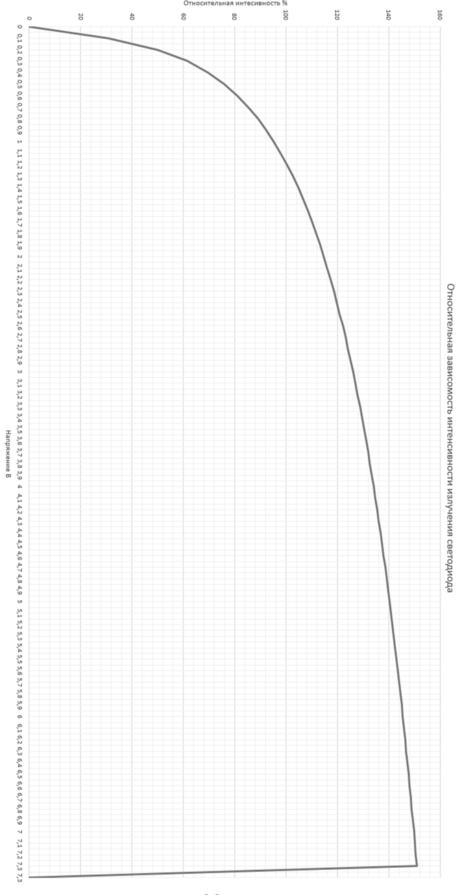

Задача 3

Вам предоставлена для исследования некоторая электрическая схема, показанная на рисунке. Изучив схему, дайте ответы на следующие вопросы:

- 1) Чему равна выдаваемая на выходе мощность источника питания?
- 2) Чем источник напряжения отличается от источника тока?
- 3) Рассчитайте номинал сопротивления и рассеиваемую мощность резистора R_1 и R_2 на представленной схеме, если известно, что для корректной работы первого светодиода необходима сила тока равная 40мА и падение напряжения составляет 2B, а для второго светодиода сила тока 20мА и падение напряжения 2B. Резистор R_3 =100Ом, источник напряжения 6B.

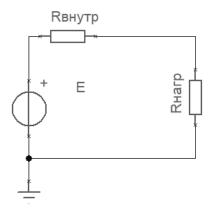


4) Рассчитайте номинал сопротивления и рассеиваемую мощность резистора R_1 , а так же рассеиваемую мощность резистора R_2 на представленной схеме, на основании графика зависимости интенсивности излучения светодиода и его вольт-амперной характеристики при мощности работы светодиода на 132%. Источник напряжения 4B, сопротивление R_2 =1 кОм.



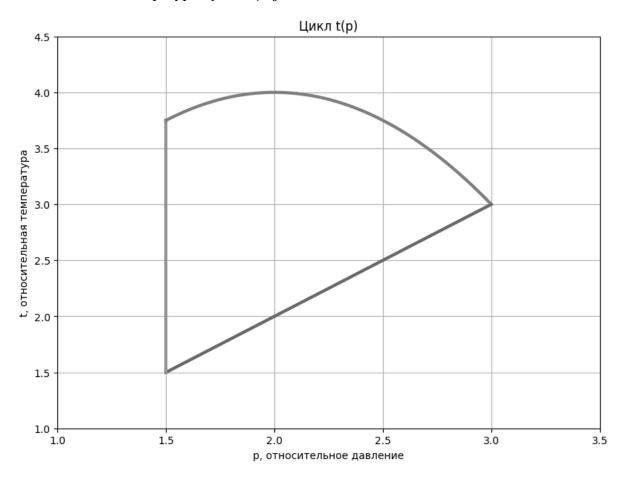
Москва 2024 / 2025 уч. г.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ


Москва 2024 / 2025 уч. г.

Москва 2024 / 2025 уч. г.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ


5) Определите и обоснуйте, при каком сопротивлении $R_{\rm harp}$ реальный источник напряжения будет выдавать максимальную мощность, если известно E=5 В, $R_{\rm внутр}=1$ КОм.

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Задача 4

Один моль одноатомного идеального газа участвует в прямом циклическом процессе, изображённом на рисунке. График приведён в координатах t(p), где $t=T/T_0$ - относительная температура; $p=P/P_0$ - относительное давление.

Цикл состоит из прямо пропорциональной зависимости температуры от давления, участка параболы, которая задаётся формулой $t=-p^2+4p$, и изобары. Перестройте график в p(V) координатах, где V-объём газа. Найдите работу газа A в этом процессе, если $T_0=250$ K. Газовая постоянная R=8,31 $\frac{{\cal A}^{\rm ж}}{{}^{\rm моль \, K}}$

МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

Задача 5

Задача об остывании воды, несмотря на свою простоту, является одной из самых важных при рассмотрении любых инженерных систем, в которых имеется нагретая жидкость, или возможен перенос тепла (путём прямого нагрева, или излучения, например). Однако процесс переноса тепла в окружающее пространство редко рассматривается в классическом школьном курсе физики, при решении задач которого теплопотерями часто пренебрегают, а системы рассматривают в варианте с отсутствующим теплообменом через стенку (или поверхность) объекта. Интересующийся школьник в этот момент может вспомнить эмпирический закон Ньютона-Рихмана, описывающий тепловой поток между разными температурами через температурный напор. Природа переноса тепла от некоторого теплоносителя в сосуде в общем случае должна включать в себя рассмотрение всех процессов одновременно: конвекции, излучения, теплопроводности, а также испарения (в случае высокой температуры). Однако если разница температуры между теплоносителем и окружающей средой не очень велика, скорость изменения температуры объекта можно считать пропорциональной разнице этих температур. В общем виде это описывается так называемым дифференциальным уравнением, имеющим вид:

$$\frac{dT}{dt} = -r(T - T_s)$$

Где Т - температура теплоносителя, T_s - температура окружающей среды, r - некоторый «коэффициент остывания», зависящий от механизма теплопередачи, площади поверхности, и иных свойств нашего объекта. Этот закон носит название закон теплопроводности Ньютона. Однако компьютер, как и мы, плохо умеет аналитически считать такие уравнения. Одним из способов его решить (то есть найти зависимость y(x)) является так называемый метод Эйлера. Для понимания принципа работы этого метода можно рассмотреть функцию в упрощённом виде:

$$\frac{dy}{dt} = f(x, y), y(t_0) = y_0$$

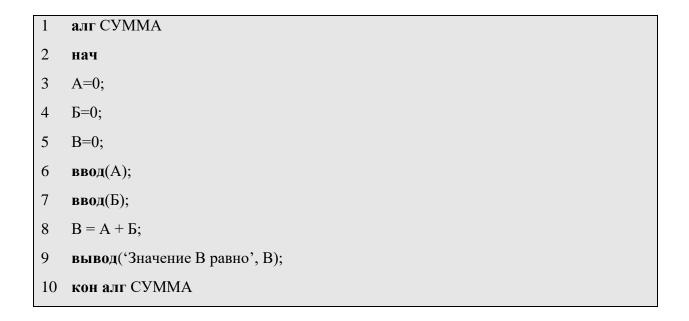
Смысл методики заключается в делении функции у(x) на малые отрезки, на каждом из которых мы считает её линейной. В этом случае, для расчёта значения функции можно воспользоваться линейным приближением:

$$y_{n+1} = y_n + \Delta x \cdot f(x_n, y_n)$$

 Δx - расстояние между соседними точками (шаг деления)

Пользуясь этой информацией, выполните следующие задания:

- 1) Напишите формулы, описывающие алгоритм Эйлера для решения уравнения теплопроводности. Считая начальную температуру воздуха 23 °C, а теплоносителя 82 °C, выполните численный расчёт с помощью алгоритма Эйлера не менее чем для 7 точек. Коэффициент г считать равным 0,0503.
- 2) Напишите алгоритм решения уравнения методом Эйлера в формате псевдокода, для реализации в виде программы.
- 3) На основании экспериментальных данных о остывании теплоносителя в сосуде (при начальной температуре воздуха 22 °C) постройте на одном графике зависимости T(t) для


МЕЖДИСЦИПЛИНАРНЫЕ ЗАДАЧИ

реальных данных и результаты собственного расчёта. Сделайте вывод о результатах вычисления.

Таблица 1. Зависимость температуры теплоносителя от времени

Время, мин	T, °C	Время, мин	T, °C
0	82.0	8.0	64.7
1.0	76.7	9.0	63.4
2.0	74.1	10.0	61.9
3.0	72.0	11.0	61.0
4.0	71.1	12.0	59.9
5.0	69.4	13.0	58.7
6.0	67.8	14.0	57.8
7.0	66.4	15.0	56.6

Пример программы для расчёта суммы двух чисел в виде псевдокода приведён ниже:

